3.9.3 \(\int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx\) [803]

3.9.3.1 Optimal result
3.9.3.2 Mathematica [C] (verified)
3.9.3.3 Rubi [A] (verified)
3.9.3.4 Maple [A] (verified)
3.9.3.5 Fricas [B] (verification not implemented)
3.9.3.6 Sympy [F]
3.9.3.7 Maxima [A] (verification not implemented)
3.9.3.8 Giac [F]
3.9.3.9 Mupad [F(-1)]

3.9.3.1 Optimal result

Integrand size = 21, antiderivative size = 184 \[ \int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=-\frac {(a+b) \arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {(a+b) \arctan \left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2} d}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {(a-b) \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d}-\frac {(a-b) \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )}{2 \sqrt {2} d} \]

output
2/3*b/d/cot(d*x+c)^(3/2)+1/2*(a+b)*arctan(-1+2^(1/2)*cot(d*x+c)^(1/2))/d*2 
^(1/2)+1/2*(a+b)*arctan(1+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+1/4*(a-b)*ln 
(1+cot(d*x+c)-2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)-1/4*(a-b)*ln(1+cot(d*x+c 
)+2^(1/2)*cot(d*x+c)^(1/2))/d*2^(1/2)+2*a/d/cot(d*x+c)^(1/2)
 
3.9.3.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.59 (sec) , antiderivative size = 194, normalized size of antiderivative = 1.05 \[ \int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\frac {\sqrt {\cot (c+d x)} \sqrt {\tan (c+d x)} \left (3 a \left (2 \sqrt {2} \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \sqrt {2} \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+\sqrt {2} \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\sqrt {2} \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )+8 \sqrt {\tan (c+d x)}\right )-8 b \left (-1+\operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},-\tan ^2(c+d x)\right )\right ) \tan ^{\frac {3}{2}}(c+d x)\right )}{12 d} \]

input
Integrate[(a + b*Tan[c + d*x])/Cot[c + d*x]^(3/2),x]
 
output
(Sqrt[Cot[c + d*x]]*Sqrt[Tan[c + d*x]]*(3*a*(2*Sqrt[2]*ArcTan[1 - Sqrt[2]* 
Sqrt[Tan[c + d*x]]] - 2*Sqrt[2]*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + S 
qrt[2]*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] - Sqrt[2]*Log[1 
+ Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]] + 8*Sqrt[Tan[c + d*x]]) - 8*b 
*(-1 + Hypergeometric2F1[3/4, 1, 7/4, -Tan[c + d*x]^2])*Tan[c + d*x]^(3/2) 
))/(12*d)
 
3.9.3.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.98, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.857, Rules used = {3042, 4156, 3042, 4012, 3042, 4012, 25, 3042, 4017, 25, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan (c+d x)}{\cot (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4156

\(\displaystyle \int \frac {a \cot (c+d x)+b}{\cot ^{\frac {5}{2}}(c+d x)}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b-a \tan \left (c+d x+\frac {\pi }{2}\right )}{\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 4012

\(\displaystyle \int \frac {a-b \cot (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)}dx+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {a+b \tan \left (c+d x+\frac {\pi }{2}\right )}{\left (-\tan \left (c+d x+\frac {\pi }{2}\right )\right )^{3/2}}dx+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4012

\(\displaystyle \int -\frac {b+a \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {b+a \cot (c+d x)}{\sqrt {\cot (c+d x)}}dx+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \frac {b-a \tan \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {-\tan \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 4017

\(\displaystyle -\frac {2 \int -\frac {b+a \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \int \frac {b+a \cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1482

\(\displaystyle -\frac {2 \left (\frac {1}{2} (a-b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \int \frac {\cot (c+d x)+1}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}\right )}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1476

\(\displaystyle -\frac {2 \left (\frac {1}{2} (a-b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {1}{2} \int \frac {1}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}+\frac {1}{2} \int \frac {1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )\right )}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1082

\(\displaystyle -\frac {2 \left (\frac {1}{2} (a-b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\cot (c+d x)-1}d\left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 217

\(\displaystyle -\frac {2 \left (\frac {1}{2} (a-b) \int \frac {1-\cot (c+d x)}{\cot ^2(c+d x)+1}d\sqrt {\cot (c+d x)}-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1479

\(\displaystyle -\frac {2 \left (\frac {1}{2} (a-b) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\cot (c+d x)}}{\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\cot (c+d x)}+1}{\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1}d\sqrt {\cot (c+d x)}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {2 \left (\frac {1}{2} (a-b) \left (\frac {\log \left (\cot (c+d x)+\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\cot (c+d x)-\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\cot (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 a}{d \sqrt {\cot (c+d x)}}+\frac {2 b}{3 d \cot ^{\frac {3}{2}}(c+d x)}\)

input
Int[(a + b*Tan[c + d*x])/Cot[c + d*x]^(3/2),x]
 
output
(2*b)/(3*d*Cot[c + d*x]^(3/2)) + (2*a)/(d*Sqrt[Cot[c + d*x]]) - (2*(-1/2*( 
(a + b)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2]) + ArcTan[1 + Sq 
rt[2]*Sqrt[Cot[c + d*x]]]/Sqrt[2])) + ((a - b)*(-1/2*Log[1 - Sqrt[2]*Sqrt[ 
Cot[c + d*x]] + Cot[c + d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] 
 + Cot[c + d*x]]/(2*Sqrt[2])))/2))/d
 

3.9.3.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4012
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/ 
(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2)   Int[(a + b*Tan[e + f*x] 
)^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a 
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1 
]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4156
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x 
_)]^(n_.))^(p_.), x_Symbol] :> Simp[d^(n*p)   Int[(d*Cot[e + f*x])^(m - n*p 
)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && 
  !IntegerQ[m] && IntegersQ[n, p]
 
3.9.3.4 Maple [A] (verified)

Time = 1.00 (sec) , antiderivative size = 237, normalized size of antiderivative = 1.29

method result size
derivativedivides \(-\frac {-8 b \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )+3 a \sqrt {2}\, \ln \left (-\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}\right )+6 a \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+6 b \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+6 a \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+6 b \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+3 b \sqrt {2}\, \ln \left (-\frac {\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )-24 a \left (\sqrt {\tan }\left (d x +c \right )\right )}{12 d \left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right )^{\frac {3}{2}}}\) \(237\)
default \(-\frac {-8 b \left (\tan ^{\frac {3}{2}}\left (d x +c \right )\right )+3 a \sqrt {2}\, \ln \left (-\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}\right )+6 a \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+6 b \sqrt {2}\, \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+6 a \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+6 b \sqrt {2}\, \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+3 b \sqrt {2}\, \ln \left (-\frac {\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )-\tan \left (d x +c \right )-1}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )-24 a \left (\sqrt {\tan }\left (d x +c \right )\right )}{12 d \left (\frac {1}{\tan \left (d x +c \right )}\right )^{\frac {3}{2}} \tan \left (d x +c \right )^{\frac {3}{2}}}\) \(237\)

input
int((a+b*tan(d*x+c))/cot(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
-1/12/d*(-8*b*tan(d*x+c)^(3/2)+3*a*2^(1/2)*ln(-(1+2^(1/2)*tan(d*x+c)^(1/2) 
+tan(d*x+c))/(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c)-1))+6*a*2^(1/2)*arctan(1 
+2^(1/2)*tan(d*x+c)^(1/2))+6*b*2^(1/2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+ 
6*a*2^(1/2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))+6*b*2^(1/2)*arctan(-1+2^(1 
/2)*tan(d*x+c)^(1/2))+3*b*2^(1/2)*ln(-(2^(1/2)*tan(d*x+c)^(1/2)-tan(d*x+c) 
-1)/(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))-24*a*tan(d*x+c)^(1/2))/(1/tan 
(d*x+c))^(3/2)/tan(d*x+c)^(3/2)
 
3.9.3.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 600 vs. \(2 (150) = 300\).

Time = 0.26 (sec) , antiderivative size = 600, normalized size of antiderivative = 3.26 \[ \int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\frac {3 \, d \sqrt {-\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + 2 \, a b}{d^{2}}} \log \left ({\left (b d^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + {\left (a^{3} - a b^{2}\right )} d\right )} \sqrt {-\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + 2 \, a b}{d^{2}}} - {\left (a^{4} - b^{4}\right )} \sqrt {\tan \left (d x + c\right )}\right ) - 3 \, d \sqrt {-\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + 2 \, a b}{d^{2}}} \log \left (-{\left (b d^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + {\left (a^{3} - a b^{2}\right )} d\right )} \sqrt {-\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} + 2 \, a b}{d^{2}}} - {\left (a^{4} - b^{4}\right )} \sqrt {\tan \left (d x + c\right )}\right ) - 3 \, d \sqrt {\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - 2 \, a b}{d^{2}}} \log \left ({\left (b d^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - {\left (a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - 2 \, a b}{d^{2}}} - {\left (a^{4} - b^{4}\right )} \sqrt {\tan \left (d x + c\right )}\right ) + 3 \, d \sqrt {\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - 2 \, a b}{d^{2}}} \log \left (-{\left (b d^{3} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - {\left (a^{3} - a b^{2}\right )} d\right )} \sqrt {\frac {d^{2} \sqrt {-\frac {a^{4} - 2 \, a^{2} b^{2} + b^{4}}{d^{4}}} - 2 \, a b}{d^{2}}} - {\left (a^{4} - b^{4}\right )} \sqrt {\tan \left (d x + c\right )}\right ) + \frac {4 \, {\left (b \tan \left (d x + c\right )^{2} + 3 \, a \tan \left (d x + c\right )\right )}}{\sqrt {\tan \left (d x + c\right )}}}{6 \, d} \]

input
integrate((a+b*tan(d*x+c))/cot(d*x+c)^(3/2),x, algorithm="fricas")
 
output
1/6*(3*d*sqrt(-(d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + 2*a*b)/d^2)*log(( 
b*d^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + (a^3 - a*b^2)*d)*sqrt(-(d^2*sqr 
t(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + 2*a*b)/d^2) - (a^4 - b^4)*sqrt(tan(d*x + 
 c))) - 3*d*sqrt(-(d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + 2*a*b)/d^2)*lo 
g(-(b*d^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + (a^3 - a*b^2)*d)*sqrt(-(d^2 
*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) + 2*a*b)/d^2) - (a^4 - b^4)*sqrt(tan(d 
*x + c))) - 3*d*sqrt((d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - 2*a*b)/d^2) 
*log((b*d^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - (a^3 - a*b^2)*d)*sqrt((d^ 
2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - 2*a*b)/d^2) - (a^4 - b^4)*sqrt(tan( 
d*x + c))) + 3*d*sqrt((d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - 2*a*b)/d^2 
)*log(-(b*d^3*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - (a^3 - a*b^2)*d)*sqrt(( 
d^2*sqrt(-(a^4 - 2*a^2*b^2 + b^4)/d^4) - 2*a*b)/d^2) - (a^4 - b^4)*sqrt(ta 
n(d*x + c))) + 4*(b*tan(d*x + c)^2 + 3*a*tan(d*x + c))/sqrt(tan(d*x + c))) 
/d
 
3.9.3.6 Sympy [F]

\[ \int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {a + b \tan {\left (c + d x \right )}}{\cot ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*tan(d*x+c))/cot(d*x+c)**(3/2),x)
 
output
Integral((a + b*tan(c + d*x))/cot(c + d*x)**(3/2), x)
 
3.9.3.7 Maxima [A] (verification not implemented)

Time = 0.30 (sec) , antiderivative size = 152, normalized size of antiderivative = 0.83 \[ \int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\frac {6 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 6 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - 3 \, \sqrt {2} {\left (a - b\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + 3 \, \sqrt {2} {\left (a - b\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + 8 \, {\left (b + \frac {3 \, a}{\tan \left (d x + c\right )}\right )} \tan \left (d x + c\right )^{\frac {3}{2}}}{12 \, d} \]

input
integrate((a+b*tan(d*x+c))/cot(d*x+c)^(3/2),x, algorithm="maxima")
 
output
1/12*(6*sqrt(2)*(a + b)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)) 
)) + 6*sqrt(2)*(a + b)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)) 
)) - 3*sqrt(2)*(a - b)*log(sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1 
) + 3*sqrt(2)*(a - b)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1 
) + 8*(b + 3*a/tan(d*x + c))*tan(d*x + c)^(3/2))/d
 
3.9.3.8 Giac [F]

\[ \int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\int { \frac {b \tan \left (d x + c\right ) + a}{\cot \left (d x + c\right )^{\frac {3}{2}}} \,d x } \]

input
integrate((a+b*tan(d*x+c))/cot(d*x+c)^(3/2),x, algorithm="giac")
 
output
integrate((b*tan(d*x + c) + a)/cot(d*x + c)^(3/2), x)
 
3.9.3.9 Mupad [F(-1)]

Timed out. \[ \int \frac {a+b \tan (c+d x)}{\cot ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {a+b\,\mathrm {tan}\left (c+d\,x\right )}{{\mathrm {cot}\left (c+d\,x\right )}^{3/2}} \,d x \]

input
int((a + b*tan(c + d*x))/cot(c + d*x)^(3/2),x)
 
output
int((a + b*tan(c + d*x))/cot(c + d*x)^(3/2), x)